alexa DNA damage in fish (Anguilla anguilla) exposed to a glyphosate-based herbicide -- elucidation of organ-specificity and the role of oxidative stress.
Agri and Aquaculture

Agri and Aquaculture

Fisheries and Aquaculture Journal

Author(s): Guilherme S, Gaivo I, Santos MA, Pacheco M

Abstract Share this page

Abstract Organophosphate herbicides are among the most dangerous agrochemicals for the aquatic environment. In this context, Roundup(®), a glyphosate-based herbicide, has been widely detected in natural water bodies, representing a potential threat to non-target organisms, namely fish. Thus, the main goal of the present study was to evaluate the genotoxic potential of Roundup(®) in the teleost fish Anguilla anguilla, addressing the possible causative involvement of oxidative stress. Fish were exposed to environmentally realistic concentrations of this herbicide (58 and 116 μgL(-1)) during one or three days. The standard procedure of the comet assay was applied to gill and liver cells in order to determine organ-specific genetic damage. Since liver is a central organ in xenobiotic metabolism, nucleoids of hepatic cells were also incubated with a lesion-specific repair enzyme (formamidopyrimidine DNA glycosylase - FPG), in order to recognise oxidised purines. Antioxidants were determined in both organs as indicators of pro-oxidant state. In general, both organs displayed an increase in DNA damage for the two Roundup(®) concentrations and exposure times, although liver showed to be less susceptible to the lower concentration. The enzyme-modified comet assay showed the occurrence of FPG-sensitive sites in liver only after a 3-day exposure to the higher Roundup(®) concentration. The antioxidant defences were in general unresponsive, despite a single increment of catalase activity in gills (116 μgL(-1), 3-day) and a decrease of superoxide dismutase activity in liver (58 μgL(-1), 3-day). Overall, the mechanisms involved in Roundup(®)-induced DNA strand-breaks showed to be similar in both organs. Nevertheless, it was demonstrated that the type of DNA damage varies with the concentration and exposure duration. Hence, after 1-day exposure, an increase on pro-oxidant state is not a necessary condition for the induction of DNA-damaging effects of Roundup(®). By increasing the duration of exposure to three days, ROS-dependent processes gained preponderance as a mechanism of DNA-damage induction in the higher concentration. © 2011 Elsevier B.V. All rights reserved. This article was published in Mutat Res and referenced in Fisheries and Aquaculture Journal

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version