alexa DNA damage-induced downregulation of Cdc25C is mediated by p53 via two independent mechanisms: one involves direct binding to the cdc25C promoter.


Journal of Clinical & Cellular Immunology

Author(s): St Clair S, Giono L, VarmehZiaie S, ResnickSilverman L, Liu WJ,

Abstract Share this page

Abstract The Cdc25C phosphatase mediates cellular entry into mitosis. The cdc25C gene is a target for transcriptional downregulation by the tumor suppressor protein p53, and this repression can be shown to contribute to p53-dependent cell cycle arrest. Two independent mechanisms have been identified. One involves the direct binding of p53 to a site in the cdc25C promoter, and the second involves a CDE/CHR element. Both of these mediate p53-dependent repression at levels of p53 comparable to those produced by DNA damage. Three CCAAT elements in the cdc25C promoter that were previously implicated in p53-dependent repression fail to do so at physiologically relevant levels of p53. Repression of Cdc25C by p53 represents an additional mechanism for p53-dependent cell cycle arrest in response to DNA damage. Importantly, this is a clear demonstration of p53-mediated transcriptional downregulation that is dependent on sequence-specific DNA binding by p53. This article was published in Mol Cell and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version