alexa DNA ligase III as a candidate component of backup pathways of nonhomologous end joining.


Journal of Cancer Science & Therapy

Author(s): Wang H, Rosidi B, Perrault R, Wang M, Zhang L,

Abstract Share this page

Abstract Biochemical and genetic studies support the view that the majority of DNA double-strand breaks induced in the genome of higher eukaryotes by ionizing radiation are removed by two pathways of nonhomologous end joining (NHEJ) termed D-NHEJ and B-NHEJ. Whereas D-NHEJ depends on the activities of the DNA-dependent protein kinase and DNA ligase IV/XRCC4, components of B-NHEJ have not been identified. Using extract fractionation, we show that the majority of DNA end joining activity in extracts of HeLa cells derives from DNA ligase III. DNA ligase III fractionates through two columns with the maximum in DNA end joining activity and its depletion from the extract causes loss of activity that can be recovered by the addition of purified enzyme. The same fractionation protocols provide evidence for an additional factor strongly enhancing DNA end joining and shifting the product spectrum from circles to multimers. An in vivo plasmid assay shows that DNA ligase IV-deficient mouse embryo fibroblasts retain significant DNA end joining activity that can be reduced by up to 80\% by knocking down DNA ligase III using RNA interference. These in vivo and in vitro observations identify DNA ligase III as a candidate component for B-NHEJ and point to additional factors contributing to NHEJ efficiency. This article was published in Cancer Res and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version