alexa DNA molecule manipulation by motor proteins for analysis at the single-molecule level.


Journal of Biosensors & Bioelectronics

Author(s): Yokokawa R, Miwa J, Tarhan MC, Fujita H, Kasahara M

Abstract Share this page

Abstract Massively parallel and individual DNA manipulation for analysis has been demonstrated by designing a fully self-assembled molecular system using motor proteins. DNA molecules were immobilized by trapping in a polyacrylamide gel replica, and were digested by a restriction enzyme, XhoI, for DNA analysis. One end of the lambdaDNA was modified with biotin and the other end was modified with digoxin molecules by fragment labeling and ligation methods. The digoxin-functionalized end was immobilized on a glass surface coated with anti-digoxigenin antibody. The biotinylated end was freely suspended and experienced Brownian motion in a buffer solution. The free end was attached to a biotinylated microtubule via avidin-biotin biding and the DNA was stretched by a kinesin-based gliding assay. A stretched DNA molecule was fixed between the gel and coverslip to observe the cleavage of the DNA by the enzyme, which was supplied through the gel network structure. This simple process flow from DNA manipulation to analysis offers a new method of performing molecular surgery at the single-molecule scale. This article was published in Anal Bioanal Chem and referenced in Journal of Biosensors & Bioelectronics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version