alexa DNA supercoiling and temperature adaptation: A clue to early diversification of life?


Enzyme Engineering

Author(s): LpezGarca P

Abstract Share this page

Abstract Cellular systems to control an appropriate DNA geometry for function probably evolved simultaneously with DNA genomes. Such systems are basically DNA topoisomerases and DNA-binding proteins. Therefore, their distribution in extant organisms may be a source of information on early evolution and the nature of the last common ancestor (cenancestor). Most living beings need the strand-opening potential of negative DNA supercoiling to allow transcription and other DNA-dependent processes. Mesophiles have global negatively supercoiled DNA, essentially due to gyrase (introducing negative supercoils) in bacteria and to DNA wrapping around histone cores in eukaryotes. Mesophilic archaea, halophilic methanogens, and halophiles might use a gyrase, whereas some methanogens might use histone wrapping. The existence of these two distinct mechanisms suggests that mesophily appeared at least twice in evolution. On the other hand, only one system which is based on reverse gyrase (introducing positive supercoils) appears to be required for hyperthermophilic life. Archaeal hyperthermophiles lacking gyrase have relaxed to positively supercoiled DNA, but hyperthermophilic bacteria of the genus Thermotoga, which have both gyrase and reverse gyrase, have negative supercoiling. This suggests that reverse gyrase is necessary at least locally, but whereas these hyperthermophilic bacteria favor general melting potential and stability at critical active regions, hyperthermophilic archaea favor general linking excess and local melting. In this context, the existence of a thermophilic (60-80 degrees C) ancestor endowed with only relaxing topoisomerases is hypothesized. Such temperatures allow a compromise between melting potential and stability, i.e., an appropriate DNA geometry for function. Subsequent duplication and functional specialization of existing DNA topoisomerases would then have facilitated adaptation to hyperthermophily and mesophily in archaea and bacteria, respectively. If reverse gyrase is an ancient character in hyperthermophilic bacteria, the cenancestor would have already been a hyperthermophile. Histone sequence homology and similarities of nucleosome structural dynamics suggest that eukaryotes inherited this system for DNA structural homeostasis from methanogenic euryarchaea. Some mesophilic archaea would have improved their adaptability to mesophily by importing gyrase from bacteria.
This article was published in J Mol Evol and referenced in Enzyme Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd International Conference on Genetic and Protein Engineering
    Nov 02-Nov 03, 2017 Las Vegas, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version