alexa DNA vaccines: a simple DNA sensing matter?


Journal of Allergy & Therapy

Author(s): Coban C, Kobiyama K, Jounai N, Tozuka M, Ishii KJ

Abstract Share this page

Abstract Since the introduction of DNA vaccines two decades ago, this attractive strategy has been hampered by its low immunogenicity in humans. Studies conducted to improve the immunogenicity of DNA vaccines have shown that understanding the mechanism of action of DNA vaccines might be the key to successfully improving their immunogenicity. Our current understanding is that DNA vaccines induce innate and adaptive immune responses in two ways: (1) encoded protein (or polypeptide) antigen(s) by the DNA plasmid can be expressed in stromal cells (i.e., muscle cells) as well as DCs, where these antigens are processed and presented to naïve CD4 or CD8 T cells either by direct or cross presentation, respectively; and (2) the transfected DNA plasmid itself may bind to an un-identified cytosolic DNA sensor and activate the TBK1-STING pathway and the production of type I interferons (IFNs) which function as an adjuvant. Recent studies investigating double-stranded cytosolic DNA sensor(s) have highlighted new mechanisms in which cytosolic DNA may release secondary metabolites, which are in turn recognized by a novel DNA sensing machinery. Here, we discuss these new metabolites and the possibilities of translating this knowledge into improved immunogenicity for DNA vaccines.
This article was published in Hum Vaccin Immunother and referenced in Journal of Allergy & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version