alexa Docetaxel-induced apoptosis in melanoma cells is dependent on activation of caspase-2.
Molecular Biology

Molecular Biology

Journal of Cytology & Histology

Author(s): Mhaidat NM, Wang Y, Kiejda KA, Zhang XD, Hersey P

Abstract Share this page

Abstract Taxanes have a broad spectrum of activity against various human cancers, including melanoma. In this study, we have examined the molecular mechanism of docetaxel-induced apoptosis of human melanoma. We report that docetaxel induced varying degrees of apoptosis in a panel of melanoma cell lines but not in normal fibroblasts. Induction of apoptosis was caspase dependent and associated with changes in mitochondrial membrane potential that could be inhibited by overexpression of Bcl-2. Docetaxel induced changes in Bax that correlated with sensitivity to docetaxel-induced apoptosis. These changes in Bax were not inhibited by overexpression of Bcl-2. Kinetic studies of caspase-2 activation by Western blotting and fluorogenic assays revealed that activation of caspase-2 seemed to be the initiating event. Inhibition of caspase-2 with z-VDVAD-fmk or by small interfering RNA knockdown inhibited changes in Bax and mitochondrial membrane potential and events downstream of mitochondria. Activation of caspase-8 and Bid seemed to be a late event, and docetaxel was able to induce apoptosis in cells deficient in caspase-8 and Bid. p53 did not seem to be involved as a p53 null cell line was sensitive to docetaxel and an inhibitor of p53 did not inhibit apoptosis. Small interfering RNA knockdown of PUMA and Noxa also did not inhibit apoptosis. These results suggest that docetaxel induces apoptosis in melanoma cells by pathways that are dependent on activation of caspase-2, which initiates mitochondrial dependent apoptosis by direct or indirect activation of Bax. This article was published in Mol Cancer Ther and referenced in Journal of Cytology & Histology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords