alexa Down regulation of small intestinal ion transport in PDZK1- (CAP70 NHERF3) deficient mice.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Hillesheim J, Riederer B, Tuo B, Chen M, Manns M,

Abstract Share this page

Abstract The PDZ-binding protein PDZK1 (CAP70/PDZ-dc-1/NHERF3) in vitro binds to cystic fibrosis transmembrane conductance regulator (CFTR), the anion exchangers SLC26A3 and SLC26A6 and the Na(+)/H(+) exchanger NHE3, all of which are major transport proteins for intestinal anion secretion and salt absorption. This study was undertaken to search for a role of PDZK1 in regulating electrolyte transport in native murine small intestine. Short circuit current (I (SC)) and HCO-(3) secretory rate (J(HCO-)(3)) were measured to assess electrogenic anion secretion; (22)Na(+) fluxes to assess sodium absorption in isolated small intestine. NHE3, CFTR, as well as NHERF1, NHERF2, and PDZK1 messenger RNA (mRNA) expression levels, and NHE3 total enterocyte and brush border membrane (BBM) protein abundance were determined by quantitative polymerase chain reaction (PCR) and Western analysis. NHE3 localization was performed by immunohistochemistry. In pdzk1 -/- jejunal mucosa, basal net Na(+) absorption as well as the inhibition of Na(+) absorption by forskolin was significantly reduced. In pdzk1 -/- duodenal mucosa, identical basal I (SC) and (J(HCO-)(3)) but a significant, yet mild, reduction of forskolin-stimulated Delta(J(HCO-)(3)) and DeltaI (SC) was observed compared to +/+ tissue. Tissue conductance, morphological features, and the DeltaI (SC) and increase in (22)Na(+) absorption in response to luminal glucose was identical in pdzk1 +/+ and -/- small intestine, ruling out a general absorptive defect. While CFTR mRNA expression levels were unchanged, NHE3 mRNA expression levels were significantly increased in small intestinal mucosa of pdzk1 -/- mice. Total enterocyte and BBM abundance was not significantly different, suggesting an increased NHE3 turnover, possibly due to reduced NHE3 membrane retention time. Lack of the PDZ-adapter protein PDZK1 in murine small intestine causes a mild reduction in maximal CFTR activation, but a severe defect in electroneutral Na(+) absorption. This article was published in Pflugers Arch and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords