alexa Dual-phase, surface tension-based fabrication method for generation of tumor millibeads.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Tissue Science & Engineering

Author(s): Pradhan S, Chaudhury CS, Lipke EA

Abstract Share this page

Abstract Numerous methods have been developed for the fabrication of poly(ethylene glycol)-based hydrogel microstructures for drug-delivery and tissue-engineering applications. However, present methods focus on the fabrication of submicrometer scale hydrogel structures which have limited applications in creating larger tissue constructs, especially in recreating cancer tissue microenvironments. We aimed to establish a platform where cancer cells can be cultured in a three-dimensional (3D) environment, which closely replicates the native cancer microenvironment and facilitates efficient testing of anticancer drugs. This study demonstrated a novel surface tension-based fabrication technique for the generation of millimeter-scale hydrogel beads using a liquid-liquid dual phase system. The "hydrogel millibeads" obtained by this method were larger than previously reported, highly uniform in shape and size with better ease of size control and a high degree of consistency and reproducibility between batches. In addition, human breast cancer cells were encapsulated within these hydrogel constructs to generate "tumor millibeads", which were subsequently maintained in long-term 3D culture. Microscopic visualization using fluorescence imaging and microstructure analysis showed the morphology and uniform distribution of the cells within the 3D matrix and arrangement of cells with the surrounding scaffold material. Cell viability analysis revealed the creation of a core region of dead cells surrounded by healthy, viable cell layers at the periphery following long-term culture. These observations closely matched with those of native and in vivo tumors. Based on these results, this study established a rapidly reproducible surface tension-based fabrication technique for making spherical hydrogel millibeads and demonstrated the potential of this method in creating engineered 3D tumor tissues. It is envisioned that the developed hydrogel millibead system will facilitate the formation of physiologically relevant in vitro tumor models which will closely simulate the native tumor microenvironmental conditions and could enable future high-throughput testing of different anticancer drugs in preclinical trials. This article was published in Langmuir and referenced in Journal of Tissue Science & Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 8th International Conference on Tissue Science and Regenarative Medicine
    September 11-12, 2017 Singapore City, singapore

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version