alexa Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates.
Reproductive Medicine

Reproductive Medicine

Journal of Fertilization: In Vitro - IVF-Worldwide, Reproductive Medicine, Genetics & Stem Cell Biology

Author(s): Heo YS, Cabrera LM, Bormann CL, Shah CT, Takayama S,

Abstract Share this page

Abstract BACKGROUND: Despite advances in in vitro manipulation of preimplantation embryos, there is still a reduction in the quality of embryos produced leading to lower pregnancy rates compared with embryos produced in vivo. We hypothesized that a dynamic microfunnel embryo culture system would enhance outcomes by better mimicking the fluid-mechanical and biochemical stimulation embryos experience in vivo from ciliary currents and oviductal contractions. METHODS AND RESULTS: Mouse embryos were cultured in microdrop-static control, microfunnel-static control or microfunnel-dynamic conditions with microfluidics. All groups tested had greater than 90\% total blastocyst development from zygotes after 96 h culture. Blastocyst developmental stage was significantly enhanced (P < 0.01) under dynamic microfunnel culture conditions as evidenced by an increased percentage of hatching or hatched blastocysts (Microdrop-control 31\%; Microfunnel-control 23\%; Microfunnel-pulsatile 71\%) and significantly higher (P < 0.01) average number of cells per blastocyst (Microdrop-control 67 +/- 3; Microfunnel-control 60 +/- 3; Microfunnel-pulsatile 109 +/- 5). Blastocyst cell numbers in dynamic microfunnel cultures (109 +/- 5) more closely matched numbers obtained from in vivo grown blastocysts (144 +/- 9). Importantly, dynamic microfunnel culture significantly improved embryo implantation and ongoing pregnancy rates over static culture to levels approaching that of in utero derived preimplantation embryos. CONCLUSIONS: The improved pregnancy outcomes along with the simple and user-friendly design of the microfluidic/microfunnel system has potential to alleviate many inefficiencies in embryo production for biomedical research, genetic gain in domestic species and assisted reproductive technologies in humans.
This article was published in Hum Reprod and referenced in Journal of Fertilization: In Vitro - IVF-Worldwide, Reproductive Medicine, Genetics & Stem Cell Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version