alexa Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia.
Biomedical Sciences

Biomedical Sciences

Journal of Bioengineering & Biomedical Science

Author(s): Berridge MJ

Abstract Share this page

Abstract Neurons have highly developed Ca(2+) signaling systems responsible for regulating a large number of neural functions such as the control of brain rhythms, information processing and the changes in synaptic plasticity that underpin learning and memory. The tonic excitatory drive, which is activated by the ascending arousal system, is particularly important for processes such as sensory perception, cognition and consciousness. The Ca(2+) signaling pathway is a key component of this arousal system that regulates the neuronal excitability responsible for controlling the neural brain rhythms required for information processing and cognition. Dysregulation of the Ca(2+) signaling pathway responsible for many of these neuronal processes has been implicated in the development of some of the major neural diseases in man such as Alzheimer disease, bipolar disorder and schizophrenia. Various treatments, which are known to act by reducing the activity of Ca(2+) signaling, have proved successful in alleviating the symptoms of some of these neural diseases.
This article was published in Prion and referenced in Journal of Bioengineering & Biomedical Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version