alexa Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans.
Biomedical Sciences

Biomedical Sciences

Journal of Biomedical Engineering and Medical Devices

Author(s): Lang NP, Salvi GE, HuynhBa G, Ivanovski S, Donos N,

Abstract Share this page

Abstract OBJECTIVE: To evaluate the rate and degree of osseointegration at chemically modified moderately rough, hydrophilic (SLActive) and moderately rough, hydrophobic (SLA) implant surfaces during early phases of healing in a human model. MATERIAL AND METHODS: The devices used for this study of early healing were 4 mm long and 2.8 mm in diameter and had either an SLActive chemically modified or a moderately rough SLA surface configuration. These devices were surgically installed into the retro-molar area of 49 human volunteers and retrieved after 7, 14, 28 and 42 days of submerged healing. A 5.2-mm-long specially designed trephine with a 4.9 mm inside diameter, allowing the circumferential sampling of 1 mm tissue together with the device was applied. Histologic ground sections were prepared and histometric analyses of the tissue components (i.e. old bone, new bone, bone debris and soft tissue) in contact with the device surfaces were performed. RESULTS: All device sites healed uneventfully. All device surfaces were partially coated with bone debris. A significant fraction of this bone matrix coating became increasingly covered with newly formed bone. The process of new bone formation started already during the first week in the trabecular regions and increased gradually up to 42 days. The percentage of direct contact between newly formed bone and the device (bone-to-implant contact) after 2 and 4 weeks was more pronounced adjacent to the SLActive than to the SLA surface (14.8\% vs. 12.2\% and 48.3\% vs. 32.4\%, respectively), but after 42 days, these differences were no longer evident (61.6\% vs. 61.5\%). CONCLUSION: While healing showed similar characteristics with bone resorptive and appositional events for both SLActive and SLA surfaces between 7 and 42 days, the degree of osseointegration after 2 and 4 weeks was superior for the SLActive compared with the SLA surface. © 2011 John Wiley & Sons A/S. This article was published in Clin Oral Implants Res and referenced in Journal of Biomedical Engineering and Medical Devices

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version