alexa Eccentric perception of biological motion is unscalably poor.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Ikeda H, Blake R, Watanabe K

Abstract Share this page

Abstract Accurately perceiving the activities of other people is a crucially important social skill of obvious survival value. Human vision is equipped with highly sensitive mechanisms for recognizing activities performed by others [Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14, 201; Johansson, G. (1976). Spatio-temporal differentiation and integration in visual motion perception: An experimental and theoretical analysis of calculus-like functions in visual data processing. Psychological Research, 38, 379]. One putative functional role of biological motion perception is to register the presence of biological events anywhere within the visual field, not just within central vision. To assess the salience of biological motion throughout the visual field, we compared the detectability performances of biological motion animations imaged in central vision and in peripheral vision. To compensate for the poorer spatial resolution within the periphery, we spatially magnified the motion tokens defining biological motion. Normal and scrambled biological motion sequences were embedded in motion noise and presented in two successively viewed intervals on each trial (2AFC). Subjects indicated which of the two intervals contained normal biological motion. A staircase procedure varied the number of noise dots to produce a criterion level of discrimination performance. For both foveal and peripheral viewing, performance increased but saturated with stimulus size. Foveal and peripheral performance could not be equated by any magnitude of size scaling. Moreover, the inversion effect--superiority of upright over inverted biological motion [Sumi, S. (1984). Upside-down presentation of the Johansson moving light-spot pattern. Perception, 13, 283]--was found only when animations were viewed within the central visual field. Evidently the neural resource responsible for biological motion perception are embodied within neural mechanisms focused on central vision. This article was published in Vision Res and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version