alexa Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria.
Environmental Sciences

Environmental Sciences

Journal of Ecosystem & Ecography

Author(s): Warren DL, Seifert SN

Abstract Share this page

Maxent, one of the most commonly used methods for inferring species distributions and environmental tolerances from occurrence data, allows users to fit models of arbitrary complexity. Model complexity is typically constrained via a process known as L1 regularization, but at present little guidance is available for setting the appropriate level of regularization, and the effects of inappropriately complex or simple models are largely unknown. In this study, we demonstrate the use of information criterion approaches to setting regularization in Maxent, and we compare models selected using information criteria to models selected using other criteria that are common in the literature. We evaluate model performance using occurrence data generated from a known “true” initial Maxent model, using several different metrics for model quality and transferability. We demonstrate that models that are inappropriately complex or inappropriately simple show reduced ability to infer habitat quality, reduced ability to infer the relative importance of variables in constraining species' distributions, and reduced transferability to other time periods. We also demonstrate that information criteria may offer significant advantages over the methods commonly used in the literature.

  • To read the full article Visit
  • Subscription
This article was published in Ecological Applications and referenced in Journal of Ecosystem & Ecography

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords