alexa Ecophysiological responses of two herbaceous species to prescribed burning, alone or in combination with overstory thinning.
General Science

General Science

Forest Research: Open Access

Author(s): Huang J, Boerner RE, Rebbeck J

Abstract Share this page

Abstract The oak-rich deciduous forests of the central Appalachian Mountains of eastern North America have changed significantly since the onset of effective fire suppression early in the 20th century. Those changes have resulted in progressively decreasing light and nutrient supplies to herbaceous perennial understory species. Application of ecological restoration treatments such as reintroduction of frequent dormant-season fire and overstory thinning to pre-suppression density often increase light, soil temperature and moisture, and short-term nutrient availability to pre-suppression levels. To persist in this environment, perennial understory herbs must be able to acclimate phenotypically to the very different resource supply combinations present with and without fire suppression. As part of a larger study of the response of the long-lived herbaceous perennials Desmodium nudiflorum and Panicum boscii to ecosystem restoration treatments in Ohio mixed-oak forests, this study examined the ecophysiological effects of prescribed burning (B) and the combination of burning and thinning (T + B) in mixed-oak forests in southern Ohio. Control (C) plants had significantly lower maximum photosynthetic rate (A(max)) than those in the treated plots. The enhancement of A(max) averaged 26.7\% and 52.7\% in the B and T + B treatments, respectively. Plants from the T + B plots had higher quantum yield, stomatal conductance, and photosynthetic nutrient use efficiency than B and C plants. B plants had greater intrinsic water use efficiency (WUE) than plants in the C or T + B treatments. Light saturation point (LSP), light compensation point (LCP), and "dark" respiration (DR) did not differ among treatments. Photosynthetic parameters did vary significantly between the species, but no significant treatment × species interactions were detected. Our results support the hypothesis that prescribed burning, especially when combined with overstory thinning, in these perennial herbs can result in phenotypic acclimation characterized by enhanced photosynthetic performance. This article was published in Am J Bot and referenced in Forest Research: Open Access

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords