alexa Ectopic bone formation by electroporatic transfer of bone morphogenetic protein-4 gene.



Author(s): Kishimoto KN, Watanabe Y, Nakamura H, Kokubun S

Abstract Share this page

Abstract Orthopedic surgeons have long awaited the clinical application of bone morphogenetic proteins (BMPs) for bone regeneration. However, such possible applications involving proteins or genes transferred with virus vectors have encountered many problems, including high cost, immunological reactions, viral infection, etc. We adopted a new gene transfer system of in vivo electroporation with a plasmid expression vector. A solution of plasmid DNA containing mouse BMP-4 (pMiw-BMP4) was injected into the gastrocnemius of BALB/cA mice, and electric pulses were applied through paired-needle electrodes inserted percutaneously. As a control plasmid, LacZ-containing plasmid (pMiwZ) was transferred by electroporation. A control group in which pMiw-BMP4 was injected and not electroporated was also introduced. In these groups, the gastrocnemius was harvested at 7, 14, 21, and 28 days after electroporation (n = 6 in each). As nonplasmid controls, electroporation with saline injection (n = 6), electroporation without injection (n = 6), and saline injection only (n = 3) were prepared. In these groups, the mice were killed 7 days after experimentation. Ectopic calcification or ossification was examined by histology as well as soft X-ray. In all electroporated groups (pMiwZ, pMiw-BMP4, saline injection, and without injection), dystrophic calcification of muscle bundles and infiltration of mesenchymal cells were observed histologically. Ectopic bone formation was observed only in the pMiw-BMP4 electroporation group. At 7 days after pMiw-BMP4 electroporation, extracellular eosinophilic matrix in a collection of mesenchymal cells was observed. Between 14 and 28 days after electroporation, ectopic bone was observed in 44\% of mice, and bone marrow-like cells observed in 22\%. The newly formed bone was woven. Injection of pMiw-BMP4 or saline induced neither calcification nor ossification. Our findings indicate that BMP-4 transferred by electroporation can induce in vivo and in situ ectopic bone formation in skeletal muscle.
This article was published in Bone and referenced in Dentistry

Relevant Expert PPTs

Recommended Conferences

  • 39th Asia-Pacific Dental and Oral Care Congress
    October 26-28, 2017 Osaka, Japan
  • American World Dentistry
    November 13-14, 2017 San Antonio, U
  • 39th South American Dental Congress
    Dec 4-6,2017 Sao Paulo,Brazil

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version