alexa Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Zhang N, KomineKobayashi M, Tanaka R, Liu M, Mizuno Y,

Abstract Share this page

Abstract BACKGROUND AND PURPOSE: Oxidative stress contributes to ischemia/reperfusion neuronal damage in a consecutive 2-phase pattern: an immediate direct cytotoxic effect and subsequent redox-mediated inflammatory insult. The present study was designed to assess the neuroprotective mechanisms of edaravone, a novel free radical scavenger, through antioxidative and anti-inflammatory pathways, from the early period to up to 7 days after ischemia/reperfusion in mice. METHODS: Mice were subjected to 60-minute ischemia followed by reperfusion. They were divided into the edaravone group (n=72; with different schedules for first administration) and the vehicle (control) group (n=36). Infarct volume and neurological deficit scores were evaluated at several time points after ischemia. Immunohistochemical analysis for 4-hydroxy-2-nonenal (HNE), 8-hydroxy-deoxyguanosine (8-OHdG), ionized calcium-binding adapter molecule 1 (Iba-1), inducible NO synthase (iNOS), and nitrotyrosine were performed at 24 hours, 72 hours, or 7 days after reperfusion. RESULT: Edaravone, even when administrated 6 hours after onset of ischemia/reperfusion, significantly reduced the infarct volume (68.10+/-6.24\%; P<0.05) and improved the neurological deficit scores (P<0.05) at 24 hours after reperfusion. Edaravone markedly suppressed the accumulation of HNE-modified protein and 8-OHdG at the penumbra area during the early period after reperfusion (P<0.05) and reduced microglial activation, iNOS expression, and nitrotyrosine formation at the late period. CONCLUSIONS: Our results indicated that edaravone exerts an early neuroprotective effect through the early free radicals scavenging pathway and a late anti-inflammatory effect and suggested that edaravone is important for expansion of the therapeutic time window in stroke patients. This article was published in Stroke and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords