alexa Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short- and long-day conditions.


Journal of Addiction Research & Therapy

Author(s): Saito H, OgisoTanaka E, Okumoto Y, Yoshitake Y, Izumi H,

Abstract Share this page

Abstract Much progress has been made in our understanding of photoperiodic flowering of rice and the mechanisms underlying short-day (SD) promotion and long-day (LD) repression of floral induction. In this study, we identified and characterized the Ef7 gene, one of the rice orthologs of Arabidopsis EARLY FLOWERING 3 (ELF3). The ef7 mutant HS276, which was induced by γ-irradiation of the japonica rice cultivar 'Gimbozu', flowers late under both SD and LD conditions. Expression analyses of flowering time-related genes demonstrated that Ef7 negatively regulates the expression of Ghd7, which is a repressor of the photoperiodic control of rice flowering, and consequently up-regulates the expression of the downstream Ehd1 and FT-like genes under both SD and LD conditions. Genetic analyses with a non-functional Ghd7 allele provided further evidence that the delayed flowering of ef7 is mediated through the Ghd7 pathway. The analysis of light-induced expression of Ghd7 revealed that the ef7 mutant was more sensitive to red light than the wild-type plant, but the gate of Ghd7 expression was unchanged. Thus, our results show that Ef7 functions as a floral promoter by repressing Ghd7 expression under both SD and LD conditions. This article was published in Plant Cell Physiol and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version