alexa Effect of accelerated aging on permanent deformation and tensile bond strength of autopolymerizing soft denture liners.
Dentistry

Dentistry

Dentistry

Author(s): Takahashi JM, Consani RL, Henriques GE, Nbilo MA, Mesquita MF

Abstract Share this page

Abstract PURPOSE: The aim of this study was to evaluate the effect of different accelerated aging times on permanent deformation and tensile bond strength of two soft chairside liners, acrylic resin (T) and silicone (MS) based. MATERIALS AND METHODS: Different specimens were made for each test of each reliner. The specimens (n = 10) were submitted to accelerated aging for 2, 4, 8, 16, 32, and 64 cycles. Tensile bond strength testing was performed at a crosshead speed of 5 mm/min and permanent deformation with a compressive load of 750 gf. Data were submitted to Mann-Whitney test to compare the materials at different times, and Kruskal-Wallis and Dunn tests were used for comparing aging intervals within a given reliner. RESULTS: MS presented a lower percentage of permanent deformation (p < 0.0001) and higher tensile bond strength (p < 0.0001) than T in all time intervals and was not affected by the accelerated aging process, which reduced the permanent deformation and increased tensile bond strength of T (p < 0.05). CONCLUSION: MS presented lower permanent deformation and higher tensile bond strength than T. Although T presented changes in those properties after accelerated aging, both materials might be suited for long-term use. © 2011 by The American College of Prosthodontists. This article was published in J Prosthodont and referenced in Dentistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_ph[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords