alexa Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater.
Environmental Sciences

Environmental Sciences

Journal of Petroleum & Environmental Biotechnology

Author(s): Yi F, Chen S, Yuan C

Abstract Share this page

Abstract The alizarin red S (ARS) in simulated dye wastewater was electrochemically oxidized using an activated carbon fiber (ACF) felt as an anode. The influence of electrolytic conditions and anode structure on the dye degradation was investigated. The results indicated that initial pH, current density and supporting electrolyte type all played an important role in the dye degradation. The chemical oxygen demand (COD) removal efficiency of dye solution in neutral or alkaline medium was about 74\% after 60 min of electrolysis, which was higher than that in acidic medium. Increasing current density would lead to a corresponding increase in the dye removal. The addition of NaCl could also improve the treatment effect by enhancing the COD removal efficiency 10.3\%. For ACF anodes, larger specific surface area and higher mesopore percentage could ensure more effective electrochemical degradation of dye. The data showed that the color removal efficiency increased from 54.2 to 83.9\% with the specific surface area of ACF anodes increasing correspondingly from 894 to 1,682 m(2)/g. This article was published in J Hazard Mater and referenced in Journal of Petroleum & Environmental Biotechnology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version