alexa Effect of activated carbons modification on porosity, surface structure and phenol adsorption.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Stavropoulos GG, Samaras P, Sakellaropoulos GP

Abstract Share this page

Abstract The primary objective of this work was the examination of modified activated carbons with tailored adsorption capacity properties. Production of activated carbons with desired properties was accomplished by modification of surface functional groups and introduction of acidic/basic properties. Modification of an activated carbon was performed using partial oxygen gasification, nitric acid treatment, urea impregnation followed by pyrolysis and pyrolysis in a urea saturated stream. The surface properties of the produced samples were estimated by the multibasic titration method of Boehm and by the CO/CO2 gas evolution profiles, while pore structure development was measured by the N2 and CO2 gas adsorption isotherms. Oxygen gasification resulted in samples with surface area slightly lower that the raw activated carbon; the introduction of surface functional groups depended upon the severity of the treatment: carbonylic and phenolic type groups were introduced in all partially gasified samples, while low temperatures and short reaction times enhanced the basic character of the carbon. However, nitric acid treatment resulted in the introduction of high nitrogen amounts in the samples, the reduction of surface area and the development of a surface containing carboxylic, lactonic, phenolic and carbonylic groups with negligible HCl neutralization capacity. Treatment of activated carbon by urea supported the formation of basic groups and carbonyls. The presence of surface functional groups affected the adsorption capacity of the produced samples for the removal of specific pollutants such as phenols. Urea treated samples with a basic character and high nitrogen content presented the highest phenol uptake capacity; nitric acid treated carbons and oxygen gasified samples presented an acidic surface functionality and a low phenol adsorption capacity. The beneficial role of nitrogen on phenol adsorption was attributed to adsorbate-adsorbent interactions. This article was published in J Hazard Mater and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 6th World Congress on Biofuels and Bioenergy
    Sep 5-6, 2017 London, UK
  • 6th World Congress on Biopolymers
    September 7-9, 2017 Paris, France
  • 7th International Conference and Exhibition on Biopolymers and Bioplastics
    October 19-21, 2017 San Francisco, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version