alexa Effect of acute human cardiac allograft rejection on left ventricular systolic torsion and diastolic recoil measured by intramyocardial markers.
Cardiology

Cardiology

Arrhythmia: Open Access

Author(s): Hansen DE, Daughters GT, Alderman EL, Stinson EB, Baldwin JC

Abstract Share this page

Left ventricular systolic torsion and diastolic recoil were quantified in 12 human cardiac transplant recipients with surgically implanted intramyocardial markers with the use of computer-aided analysis of biplane cineradiographic images. Measurements were performed between 6 and 16 weeks after surgery and related to the presence or absence of rejection as determined by cardiac biopsy. Torsional deformation, defined as twisting about the left ventricular long axis of the apical region with respect to the base, was characterized in terms of the rate and amplitude of systolic torsion and the rate of diastolic recoil by means of an internal reference system. Comparison of measurements before, during, and after recovery from 14 rejection episodes allowed assessment of the effects of acute reversible cardiomyopathy on left ventricular torsion and recoil. Compared with prerejection values, the amplitude of torsional deformation in the maximally deforming segment (theta max) decreased by 25% from 21.1 +/- 15.2 to 16.0 +/- 5.7 degrees (p less than .005) during acute rejection with myocyte necrosis; this was associated with significant (p less than .05) decreases in the peak systolic torsion rate (+d theta/dtmax), whereas the peak diastolic recoil rate (-d theta/dtmax) was unchanged. This suggests that the stiffness of elastic components of the myocardium may have increased, maintaining the rate of diastolic recoil when these elements are stretched less. With successful treatment of rejection episodes, the torsional deformation characteristics normalized. Heart rate, mean arterial pressure, left ventricular end-diastolic volume, stroke volume, ejection fraction, and peak left ventricular filling rate were unchanged with rejection episodes, whereas left ventricular end-systolic volume increased (p less than .05) during acute rejection and returned to normal with resolution of the rejection process. These data suggest that left ventricular torsional deformation amplitude and rate are sensitive to episodes of subclinical left ventricular dysfunction and that such intramyocardial marker techniques may provide new insights regarding the elastic properties of the ventricular myocardium and their impact on left ventricular mechanics.

This article was published in Circulation. and referenced in Arrhythmia: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords