alexa Effect of butylhydroxytoluene and related compounds on permeability of the inner mitochondrial membrane.
Biochemistry

Biochemistry

Biochemistry & Analytical Biochemistry

Author(s): Gudz T, Eriksson O, Kushnareva Y, Saris NE, Novgorodov S

Abstract Share this page

Abstract Mitochondrial inner membrane contains a latent pore (PTP) that when opened uncouples mitochondrial energy transduction and allows rapid equilibration of low-molecular-weight solutes between the matrix and exterior. Based on sensitivity of the PTP to well-known free radical scavenger butylhydroxytoluene (BHT), it has been proposed that increased steady-state level of oxygen radicals, and subsequent radical attack of proteins and lipids, is a central event in activation of this pore (Novgorodov et al., J. Bioenerg. Biomembr. 19, 191-202, 1987; Carbonera and Azzone, Biochim. Biophys. Acta 943, 245-255, 1988). Present studies revealed that DBT, a derivative of BHT devoid of radical scavenging activity, exerts an analogous effect on the permeability of the inner membrane. Inhibition of the Ca2+-induced PTP opening is essentially complete at dose range of 50-60 nmol/mg protein with IC50 values of about 32 and 23 nmol/mg protein for DBT and BHT, respectively. Electron microscopy and osmotic experiments utilizing polyethylene glycols with different Stokes radii showed that the apparent lack of inhibition seen at high concentrations of these compounds results from cyclosporin A- and Ca2+-insensitive pore formation in the inner membrane. Experiments employing antioxidants with similar structure but dissimilar hydrophobicity provided evidence for localization of the antioxidant binding sites within the hydrophobic zone of the inner membrane or in the matrix space. The data obtained do not refute the notion that oxygen radicals modulate the PTP, but rather indicate that BHT operates independently of its free radical scavenging activity. Overall, the sensitivity to BHT and other antioxidants is not always a reliable criterion for the involvement of free radical reactions in the processes under study. This article was published in Arch Biochem Biophys and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords