alexa Effect of controlled laser microporation on drug transport kinetics into and across the skin.
Immunology

Immunology

Journal of Vaccines & Vaccination

Author(s): Bachhav YG, Summer S, Heinrich A, Bragagna T, Bhler C,

Abstract Share this page

Abstract The objectives of this study were to investigate a novel laser microporation technology ( P.L.E.A.S.E. Painless Laser Epidermal System) and to determine the effect of pore number and depth on the rate and extent of drug delivery across the skin. In addition, the micropores were visualized by confocal laser scanning microscopy and histological studies were used to determine the effect of laser fluence (energy applied per unit area) on pore depth. Porcine ear skin was used as the membrane for both the pore characterization and drug transport studies. Confocal images in the XY-plane revealed that the pores were typically 150-200 microm in diameter. Histological sections confirmed that fluence could be used to effectively control pore depth - low energy application (4.53 and 13.59 J/cm(2)) resulted in selective removal of the stratum corneum (20-30 microm), intermediate energies (e.g., 22.65 J/cm(2)) produced pores that penetrated the viable epidermis (60-100 microm) and higher application energies created pores that reached the dermis (>150-200 microm). The effects of pore number and pore depth on molecular transport were quantified by comparing lidocaine delivery kinetics across intact and porated skin samples. After 24h, cumulative skin permeation of lidocaine with 0 (control), 150, 300, 450 and 900 pores was 107+/-46, 774+/-110, 1400+/-344, 1653+/-437 and 1811+/-642 microg/cm(2), respectively; there was no statistically significant difference between 300, 450 and 900 pore data - probably due to the effect of drug depletion since >50\% of the applied dose was delivered. Importantly, increasing fluence did not produce a statistically significant increase in lidocaine permeation; after 24h, cumulative lidocaine permeation was 1180+/-448, 1350+/-445, 1240+/-483 and 1653+/-436 microg/cm(2) at fluences of 22.65, 45.3, 90.6 and 135.9 J/cm(2), respectively. Thus, shallow pores were equally effective in delivering lidocaine. Increasing lidocaine concentration in the formulation from 10 to 25mg/ml produced a corresponding increase in permeation (at 24h, 1650+/-437 and 4005+/-1389 microg/cm(2), respectively). The validity of the porcine skin model was confirmed as transport across porcine and human skins was shown to be statistically equivalent (at 24h, 1811+/-642 and 2663+/-208 microg/cm(2), respectively). The clinical potential of the technology and its capacity to provide significantly faster delivery than conventional passive administration was demonstrated in short duration experiments involving application of a marketed lidocaine cream (LMX4) to laser-porated skin; after only 5 min of formulation application, lidocaine deposition was measured at 61.3+/-7.5 microg/cm(2). In conclusion, the results demonstrate the ability of P.L.E.A.S.E.(R) (i) to create well-defined conduits in the skin, (ii) to provide a controlled enhancement of transdermal transport and (iii) to enable improvement in both the rate and extent of drug delivery. Copyright 2010 Elsevier B.V. All rights reserved. This article was published in J Control Release and referenced in Journal of Vaccines & Vaccination

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords