alexa Effect of electropulsing treatment on the microstructure, texture, and mechanical properties of cold-rolled Ti–6Al–4V alloy


OMICS Journal of Radiology

Author(s): Xiaoxin Ye, Guoyi Tang, Jie Kuang

Abstract Share this page

Electropulsing treatment (EPT) provided a promising technology to improve the microstructure and plasticity of the cold-rolled Ti–6Al–4V noticeably while only affecting the strength mildly. Thus, titanium alloy of high plasticity and good comprehensive property can be obtained by this high efficient processing method. The research found that the tensile ductility could be improved largely with the increasing frequency. In the low frequency, the maximum ductility (32.5%) could be obtained at 293 Hz-EPT. Under high-frequency EPT, plasticity has a slight decrease but the tensile strength increases in the contrary. With the help of multi-characterization, abstracting phenomena are explained and therefore the conclusion has been drawn that the whole process of increasing frequency EPT can be divided roughly into two periods: (a) recrystallization period in the low frequency, at this period athermal effect of the EPT played a leading role and (b) phase change period in the high frequency, at this period the other important factor of the EPT thermal effect was predominant. As a comparison, furnace heat treatment is conducted to prove the preferential phase transition instead of complete recrystallization under the single heating effect. The mechanism of the results can be discussed by the competitive mechanism of recrystallization process and phase change in the EPT processing.

This article was published in J Alloys Compd and referenced in OMICS Journal of Radiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version