alexa Effect of full flavor and denicotinized cigarettes exposure on the brain microvascular endothelium: a microarray-based gene expression study using a human immortalized BBB endothelial cell line.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Pharmacovigilance

Author(s): Naik P, Sajja RK, Prasad S, Cucullo L,

Abstract Share this page

Abstract BACKGROUND: Tobacco smoke (TS) toxicity to the brain microvasculature is still an understudied area till date. NF-E2 related factor (Nrf2) is a key transcription factor responsible for activating the antioxidant response element (ARE) genes following an oxidative insult. Till date, several studies targeting the blood brain barrier (BBB) have shown some protective role of Nrf2 in ischemia-reperfusion (IR) injury, however, its functional role in chronic smokers subjected to a life-long oxidative stress has never been addressed. This is of crucial importance since smokers have a much higher risk for cerebrovascular stroke and tobacco smoke exposure has been clearly shown to enhance BBB damage following an ischemia/reperfusion injury. Thus, the goal of our study was to investigate the defense pathways activated at the BBB endothelial level by TS exposure. Specifically we focused on Nrf2 and nuclear factor kappa-light-chain-enhancer of activated B signaling response (NF-κβ) as the central protective mechanisms related to oxidative insult. RESULTS: With the exception of Nicotine, both full flavor (3R4F) and decotinized (ULN) cigarettes activated Nrf2 and NFκβ pathways in hCMEC/D3 endothelial cells. Several detoxification and anti-oxidant genes including downstream products were also activated including NAD(P)H dehydrogenase quinone 1 (NQO-1), heme oxygenase-1 (HMOX-1), catalytic and modifier subunits of glutamate-cysteine ligase (GCL), solute carrier-SLC7A11). Gene expression levels of cytochrome P450s (CYP2S1 and CYP51A1) and efflux transporters P-glycoprotein (P-gp) and multi-drug resistance protein-4 (MRP4) were also enhanced. Increase of P-gp functional activity and depletion of GSH were also observed. Strikingly, toxicity of denicotinized ("reduced exposure") cigarettes was equivalent to 3R4F (or worse). CONCLUSIONS: This study provides a detailed analysis of Nrf2-related cytoprotective mechanisms activated in response to 3R4F and ULN-derived TS exposure correlating the results with their oxidative and inflammatory potential. Toxicants present in soluble cigarette smoke extracts (CSE) and not nicotine seem to be the primary determinant of vascular toxicity. In this respect our results from this and previous studies suggest that chronic TS exposure can overcome Nrf2 and NFκB-p65 dependent cytoprotective mechanisms of the brain microvascular endothelium possibly leading to BBB impairment and loss of BBB integrity.
This article was published in BMC Neurosci and referenced in Journal of Pharmacovigilance

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version