alexa Effect of nanocavity confinement on the rotational relaxation dynamics: 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine in micelles.


Biochemistry & Analytical Biochemistry

Author(s): Das P, Mallick A, Chakrabarty A, Haldar B, Chattopadhyay N

Abstract Share this page

Abstract In continuation of our recent study on the steady state photophysics of a biologically active beta-carboline derivative, 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine (AODIQ), in the present article we have investigated the effect of nanocavity confinement on the excited state dynamics and rotational relaxation of the probe using picosecond time resolved fluorescence and fluorescence anisotropy techniques. The polarity dependent intramolecular charge transfer process is responsible for the remarkable sensitivity of this biological fluorophore in micellar environments. The fluorescence anisotropy decay of AODIQ incorporated inside the micelle is biexponential. The rotational motion of the probe was interpreted on the basis of a two step model consisting of a fast restricted rotation of the probe and a slow lateral diffusion of the probe in the micelle; both coupled to the overall rotation of the micelle. Experimental results reveal that micellar environment causes significant retardation of both the wobbling as well as the translational motion of the probe. This article was published in J Chem Phys and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version