alexa Effect of NOM on arsenic adsorption by TiO(2) in simulated As(III)-contaminated raw waters.
Chemistry

Chemistry

Journal of Environmental Analytical Chemistry

Author(s): Liu G, Zhang X, Talley JW, Neal CR, Wang H

Abstract Share this page

Abstract The effect of natural organic matter (NOM) on arsenic adsorption by a commercial available TiO(2) (Degussa P25) in various simulated As(III)-contaminated raw waters was examined. Five types of NOM that represent different environmental origins were tested. Batch adsorption experiments were conducted under anaerobic conditions and in the absence of light. Either with or without the presence of NOM, the arsenic adsorption reached steady-state within 1h. The presence of 8 mg/L NOM as C in the simulated raw water, however, significantly reduced the amount of arsenic adsorbed at the steady-state. Without NOM, the arsenic adsorption increased with increasing solution pH within the pH range of 4.0-9.4. With four of the NOMs tested, the arsenic adsorption firstly increased with increasing pH and then decreased after the adsorption reached the maximum at pH 7.4-8.7. An appreciable amount of arsenate (As(V)) was detected in the filtrate after the TiO(2) adsorption in the simulated raw waters that contained NOM. The absolute amount of As(V) in the filtrate after TiO(2) adsorption was pH dependent: more As(V) was presented at pH>7 than that at pH<7. The arsenic adsorption in the simulated raw waters with and without NOM were modelled by both Langmuir and Frendlich adsorption equations, with Frendlich adsorption equation giving a better fit for the water without NOM and Langmuir adsorption equation giving a better fit for the waters with NOM. The modelling implies that NOM can occupy some available binding sites for arsenic adsorption on TiO(2) surface. This study suggests that in an As(III)-contaminated raw water, NOM can hinder the uptake of arsenic by TiO(2), but can facilitate the As(III) oxidation to As(V) at TiO(2) surface under alkaline conditions and in the absence of O(2) and light. TiO(2) thus can be used in situ to convert As(III) to the less toxic As(V) in NOM-rich groundwaters. This article was published in Water Res and referenced in Journal of Environmental Analytical Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords