alexa Effect of organic matter and iron oxides on quaternary herbicide sorption-desorption in vineyard-devoted soils.
Toxicology

Toxicology

Journal of Environmental & Analytical Toxicology

Author(s): PateiroMoure M, PrezNovo C, AriasEstvez M, RialOtero R, SimalGndara J

Abstract Share this page

Abstract Herbicide soil/solution distribution coefficients (K(d)) are used in mathematical models to predict the movement of herbicides in soil and groundwater. Herbicides bind to various soil constituents to differing degrees. The universal soil colloid that binds most herbicides is organic matter; however metallic hydrous oxides might also have some influence. The adsorption-desorption of three quaternary ammonium herbicides on soils with different chemical-physical characteristics was determined using a batch equilibration method before and after the following sequential selective dissolution procedures: removal of organic matter, and removal of organic matter plus free iron oxides. The experimentation involved paraquat (PQ), diquat (DQ) and difenzoquat (DFQ) herbicides. The distribution coefficients (K(d)) of the molecules and their correlation to the soil components were determined and a significant negative correlation with organic carbon was highlighted (r<-0.610, p<0.035, n=12). All quats cations experiment high adsorption in the control soils with a Zeta potential at about -21 mV. The order of adsorption on soils (based on K(d)) was the following: PQ>DQ>>DFQ. The adsorption isotherms of these three herbicides on the natural and processed soils were satisfactorily fitted with the Freundlich equation, and a significant correlation with organic carbon was highlighted for quats K(F) (r<-0.696, p<0.012, n=12). The removal of organic matter from soils seems to leave free new adsorption sites for quats on the clay surface, which is no longer occluded by organic matter. This work shows that the amount and nature of the surface that remains available after the removal of single soil constituents is a critical parameter in determining the sorptive behavior of cationic contaminants. This article was published in J Colloid Interface Sci and referenced in Journal of Environmental & Analytical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

i[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords