alexa Effect of passive heat stress on arterial stiffness.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

Journal of Novel Physiotherapies

Author(s): Ganio MS, Brothers RM, Shibata S, Hastings JL, Crandall CG

Abstract Share this page

Abstract Arterial compliance, the inverse of arterial stiffness, is a prognostic indicator of arterial health. Central and peripheral arterial compliance decrease with acute cold stress and may increase postexercise when exercise-induced elevations in core temperature are likely still to be present. Increased blood flow through the conduit arteries associated with elevated core temperature increases shear stress, which in turn releases nitric oxide and other endothelium-derived factors. These changes, in conjunction with supportive in vitro data, suggest that elevated core temperature may indirectly increase central and peripheral arterial compliance (i.e. decrease arterial stiffness). The purpose of this study was to test the hypothesis that increased core temperature decreases central and peripheral arterial stiffness, as measured with pulse wave velocity (PWV). Using Doppler ultrasound, carotid-femoral (central) and carotid-radial (peripheral) arterial PWVs were measured from eight subjects (age 37 ± 11 years; mass 68.8 ± 11.1 kg; height 171 ± 3 cm) before and during passive heat-stress-induced increases in core temperature of 0.47 ± 0.05, 1.03 ± 0.12 and 1.52 ± 0.07°C (i.e. baseline, 0.5, 1.0 and 1.5°C, respectively). Changes in PWV were evaluated with one-way repeated-measures ANOVA. When analysed as group means, neither central (677 ± 161, 617 ± 72, 659 ± 74 and 766 ± 207 cm s(-1); P = 0.12) nor peripheral PWV (855 ± 192, 772 ± 95, 759 ± 49 and 858 ± 247 cm s(-1); P = 0.56) changed as core temperature increased from baseline to 0.5, 1.0 and 1.5°C, respectively. However, individual changes in central (average r = -0.89, P < 0.05) and peripheral PWV (average r = -0.93, P < 0.05) with heat stress were significantly correlated with normothermic baseline PWV. In conclusion, these data suggest that the magnitude by which heat stress reduced PWV was predicated upon normothermic PWV, with the individuals having the highest normothermic PWV being most responsive to the heat-stress-induced reductions in PWV.
This article was published in Exp Physiol and referenced in Journal of Novel Physiotherapies

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 5th International Conference on Physiotherapy
    November 27-28, 2017 Dubai, UAE

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords