alexa Effect of pH and stirring rate on itaconate production by Aspergillus terreus.
Environmental Sciences

Environmental Sciences

Journal of Biodiversity, Bioprospecting and Development

Author(s): Riscaldati E, Moresi M, Federici F, Petruccioli M

Abstract Share this page

Abstract The production of itaconic acid from glucose-based media by Aspergillus terreus NRRL 1960 was found to be controlled by stirring rate and pH. When the phosphorous (P) level in the production medium was reduced to less than 10 mg l(-1), the fungal mycelium exhausted its primary growth and started to excrete itaconic acid, while it continued its secondary growth at the expense of ammoniacal nitrogen. The fermentation exhibited a mixed-growth-associated product formation kinetics, the non-growth associated production term (mI) being practically zero only when the pH was left free to change from 3.4 down to 1.85. On the contrary, when the pH was kept reducing up to a constant value by automatic addition of KOH 4 mol l(-1), the itaconate yield coefficient on the initial glucose supplied (Y(I/So)) and mI and were 0.53 g g(-1) and 0.028 h(-1) at pH 2.4 and 320 rev min(-1) and 0.5 g g(-1) and 0.036 h(-1) at pH 2.8 and 400 rev min(-1), respectively. Although the differences between mI and Y(I/So) were statistically insignificant at the 95\% confidence level, the net difference in the corresponding yield coefficients for itaconic acid on mycelial biomass resulted in a maximum itaconate production rate of 0.41 g l(-1) h(-1) at pH 2.8 and 400 rev min(-1), thus showing that this operating condition is no doubt optimal for the process under study.
This article was published in J Biotechnol and referenced in Journal of Biodiversity, Bioprospecting and Development

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version