alexa Effect of pH on the ultrasonic degradation of ionic aromatic compounds in aqueous solution.
Environmental Sciences

Environmental Sciences

Hydrology: Current Research

Author(s): Jiang Y, Ptrier C, Waite TD

Abstract Share this page

Abstract The sonolysis of 4-nitrophenol (4-NP) and aniline in O2-saturated aqueous solutions was performed at 610 kHz with ultrasonic power of 25 W and aqueous temperature of 15 +/- 1 degrees C. The initial rate of degradation of both 4-NP and aniline in sonolysis of aqueous media follows pseudo-first-order reaction kinetics. Investigation of the H2O2 generation rate in phosphate buffer media (0.01 M) over the range of pH 2-9 revealed a maximum yield at pH approximately 3.2. The pH, which results in modification of the physical properties (including charge) of molecules with ionisable functional groups, plays an important role in the sonochemical degradation of chemical contaminants. For hydrophilic substrates, the neutral species more easily diffuse to and accumulate at the hydrophobic interface of liquid-gas bubbles in comparison with their corresponding ionic forms. As a consequence, the degradation rate of 4-NP under ultrasonic irradiation decreases with increasing pH. In contrast, the disappearance rate of aniline exhibits a maximum under alkaline conditions due to the high solubility of the ionic anilinium ion and the (potentially) preferential movement of the uncharged form to the interface. Additionally, the rate of reaction of the uncharged aniline molecule (which dominates at pH > 4.6) with hydroxyl radicals is reported to be about three times as fast as the rate of reaction of the cationic anilinium species.
This article was published in Ultrason Sonochem and referenced in Hydrology: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords