alexa Effect of temperature and particle size on the thermal desorption of PCBs from contaminated soil.
Geology & Earth Science

Geology & Earth Science

Oil & Gas Research

Author(s): Qi Z, Chen T, Bai S, Yan M, Lu S, , Qi Z, Chen T, Bai S, Yan M, Lu S, , Qi Z, Chen T, Bai S, Yan M, Lu S, , Qi Z, Chen T, Bai S, Yan M, Lu S,

Abstract Share this page

Abstract Thermal desorption is widely used for remediation of soil contaminated with volatiles, such as solvents and distillates. In this study, a soil contaminated with semivolatile polychlorinated biphenyls (PCBs) was sampled at an interim storage point for waste PCB transformers and heated to temperatures from 300 to 600 °C in a flow of nitrogen to investigate the effect of temperature and particle size on thermal desorption. Two size fractions were tested: coarse soil of 420-841 μm and fine soil with particles <250 μm. A PCB removal efficiency of 98.0 \% was attained after 1 h of thermal treatment at 600 °C. The residual amount of PCBs in this soil decreased with rising thermal treatment temperature while the amount transferred to the gas phase increased up to 550 °C; at 600 °C, destruction of PCBs became more obvious. At low temperature, the thermally treated soil still had a similar PCB homologue distribution as raw soil, indicating thermal desorption as a main mechanism in removal. Dechlorination and decomposition increasingly occurred at high temperature, since shifts in average chlorination level were observed, from 3.34 in the raw soil to 2.75 in soil treated at 600 °C. Fine soil particles showed higher removal efficiency and destruction efficiency than coarse particles, suggesting that desorption from coarse particles is influenced by mass transfer. This article was published in Environ Sci Pollut Res Int and referenced in Oil & Gas Research

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version