alexa Effect of the hybrid composition on the physicochemical properties and morphology of iron oxide–gold nanoparticles
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): C M BarnettM, Gueorguieva, M R LeesD, J McGarvey

Abstract Share this page

Hybrid nanoparticles (HNPs) formed from iron oxide cores and gold nano-shells are becoming increasingly applicable in biomedicine. However, little investigation has been carried out on the effects of the constituent components on their physical characteristics. Here we determine the effect of polymer intermediate, gold nano-shell thickness and magnetic iron oxide core diameter on the morphological and physical properties of these nano-hybrids. Our findings suggest that the use of polymer intermediate directly impacts the morphology of the nanostructure formed. Here, we observed the formation of nano-sphere and nano-star structures by varying the cationic polymer intermediate. The nano-stars formed have a larger magnetic coercivity, T2 relaxivity and exhibited a unique characteristic nano-heating pattern upon laser irradiation. Increasing the iron oxide core diameter resulted in a greater T2 relaxivity enhanced and nano-heating capabilities due to increased surface area. Increasing the gold nano-shell thickness resulted in a decreased efficiency as a nano-heater along with a decrease in T2 relaxivity. These results highlight the importance of identifying the key traits required when fabricating HNPs in order to tailor them to specific applications.

This article was published in Journal of Nanoparticle Research and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version