alexa Effect of the molecular size of carboxymethylcellulose and some polymers on the sustained release of theophylline from a hydrophilic matrix.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Emeje MO, Kunle OO, Ofoefule SI

Abstract Share this page

Abstract The objective of this study was to investigate the influence of the molecular size of carboxymethylcellulose (cmc) and some hydrophobic polymer additives on the release properties of theophylline from tablet matrices. The cmc matrices were prepared by the conventional wet granulation method. The granules were evaluated for angles of repose, bulk density, compressibility index, and porosity, while the tablets were subjected to hardness, friability and compression tests. All tablet formulations showed acceptable pharmacotechnical properties. Low molecular size cmc (cmc-L) showed the shortest drug release t50\% of 27 min, for medium size cmc (cmc-M) it was 55 min and for high molecular size cmc (cmc-H) 200 min. In general, the results showed that the drug release rate decreases with an increase in the molecular size of cmc. All polymer additives, ethylcellulose, cellulose acetate phthalate and Eudragit 1-100 retarded theophylline release from cmc-L and cmc-H, with ethylcellulose having the most pronounced effect on cmc-L. Kinetic studies using Hixson-Crowell and Peppas-Ritger equations showed that different drug release mechanisms were involved in controlling drug dissolution from the tablets. The drug release mechanism was influenced by both the molecular size of cmc and the presence of polymer additives.
This article was published in Acta Pharm and referenced in Journal of Nanomedicine & Nanotechnology

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords