alexa Effect of vanadium in the +5, +4 and +3 oxidation states on cardiac force of contraction, adenylate cyclase and (Na+ + K+)-ATPase activity.
Chemistry

Chemistry

Medicinal Chemistry

Author(s): Schmitz W, Scholz H, Erdmann E, Krawietz W, Werdan K

Abstract Share this page

Abstract The influence of vanadium in the nominally +5 (NH4VO3; referred to as V5+), +4 (C10H14O5V and VOSO4; V4+) and +3 oxidation states (VCl3; V3+) on cardiac force of contraction, adenylate cyclase and (Na+ + K+)-ATPase activity was investigated in order to determine which form of vanadium mediates the cardiac effects. V5+, V4+ and V3+ (300 microM each) increased the force of contraction of isolated electrically driven cat papillary muscles by about 100\%. In the presence of the reducing agent ascorbic acid (5 mM) none of the three compounds led to any distinct increase in force of contraction. On the particulate adenylate cyclase preparation from feline right ventricles only V5+ stimulated the enzyme activity by about 100\%, whereas V4+ and V3+ were ineffective. In the presence of 5 mM ascorbic acid all three compounds were ineffective. In contrast, in the presence of the oxidizing agent diamide (azodicarboxylic acid-bis-dimethylamide; 1 mM) all three compounds became stimulatory. On the isolated (Na+ + K+)-ATPase V5+ (500 microM) alone reduced the basal activity by about 95\%. In the presence of ascorbic acid the inhibitory effect of V5+ was greatly diminished. Similar results were obtained with V4+, V3+ (100 microM) alone inhibited (Na+ + K+)-ATPase activity only by about 40\%. In the presence of ascorbic acid V3+ was ineffective. From the results it is concluded that positive inotropism, stimulation of adenylate cyclase and inhibition of (Na+ + K+)-ATPase by vanadium compounds likewise result from an action of vanadium in the +5 oxidation state.
This article was published in Biochem Pharmacol and referenced in Medicinal Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords