alexa Effective Delivery of siRNA into Cancer Cells and Tumors Using Well-Defined Biodegradable Cationic Star Polymers
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Cyrille Boyer, Joann Teo

Abstract Share this page

Cancer is one of the most common causes of death worldwide. Two types of cancer that have high mortality rates are pancreatic and lung cancer. Despite improvements in treatment strategies, resistance to chemotherapy and the presence of metastases are common. Therefore, novel therapies which target and silence genes involved in regulating these processes are required. Short-interfering RNA (siRNA) holds great promise as a therapeutic to silence disease-causing genes. However, siRNA requires a delivery vehicle to enter the cell to allow it to silence its target gene. Herein, we report on the design and synthesis of cationic star polymers as novel delivery vehicles for siRNA to silence genes in pancreatic and lung cancer cells. Dimethylaminoethyl methacrylate (DMAEMA) was polymerized via reversible addition–fragmentation transfer polymerization (RAFT) and then chain extended in the presence of both cross-linkers N,N-bis(acryloyl)cistamine and DMAEMA, yielding biodegradable well-defined star polymers. The star polymers were characterized by transmission electron microscopy, dynamic light scattering, ζ potential, and gel permeation chromatography. Importantly, the star polymers were able to self-assemble with siRNA and form small uniform nanoparticle complexes. Moreover, the ratios of star polymer required to complex siRNA were nontoxic in both pancreatic and lung cancer cells. Treatment with star polymer–siRNA complexes resulted in uptake of siRNA into both cell lines and a significant decrease in target gene mRNA and protein levels. In addition, delivery of clinically relevant amounts of siRNA complexed to the star polymer were able to silence target gene expression by 50% in an in vivo tumor setting. Collectively, these results provide the first evidence of well-defined small cationic star polymers to deliver active siRNA to both pancreatic and lung cancer cells and may be a valuable tool to inhibit key genes involved in promoting chemotherapy drug resistance and metastases.

This article was published in Mol. Pharmaceutics and referenced in Journal of Nanomedicine & Nanotechnology

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords