alexa Effective hemodynamic diameter: an intrinsic property of vein grafts with predictive value for patency.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Meyerson SL, Moawad J, Loth F, Skelly CL, Bassiouny HS,

Abstract Share this page

Abstract INTRODUCTION: Conduit size and quality are major determinants of the long-term success of infrainguinal autologous vein grafting. However, accurate measurement of the internal diameter of vein grafts is difficult given their variable wall thickness and taper. The purpose of this study was to define the "effective" internal diameter of a vein graft according to its hemodynamic properties and to determine its significance for graft patency. METHODS: Sixty infrainguinal bypass grafts performed on 57 patients were evaluated intraoperatively. Proximal and distal graft pressure and blood flow (Q(meas)) were measured with fluid-filled catheter transduction and ultrasonic transit-time flowimetry, respectively, after unclamping. Waveforms were recorded digitally at 200 Hz under baseline conditions and after stimulation with 60 mg of papaverine. According to Fourier transformation of the measured pressure gradient (DeltaP), the Womersley solution for fluid flow in a straight rigid tube was used to calculate theoretical flow waveforms (Q(calc)) for a range of graft diameters. The theoretical waveforms were then compared with the measured flow waveforms and the best-fit diameter chosen as the "effective hemodynamic diameter" (EHD). Only grafts in which the correlation coefficient of Q(calc) versus Q(meas) was more than 0.90 were accepted (n = 47) to assure validity of the hemodynamic model. After a mean follow-up of 12.5 months (range, 0.1-43.9 months), patency was determined by the life table method. Hemodynamic and clinical variables were tabulated, and their effect on patency determined the use of univariate and multivariate Cox regression. RESULTS: Mean EHD was 4.1 +/- 0.1 mm with a range of 2.5 to 5.7 mm. Administration of papaverine caused profound changes in DeltaP (+78\% +/- 17\%) and Q(meas) (+71\% +/- 12\%) as expected, but had no effect on EHD (+0.05\% +/- 0.1\%). Univariate regression identified five variables associated with decreased secondary patency (P <.10): low EHD, conduit source other than the greater saphenous vein, high baseline DeltaP(mean), female sex, and redo operation. Of these, only low EHD was significant after multivariate analysis (P =.03). Patency of small diameter grafts (EHD < 3.6 mm; n = 11) was compared with patency of larger grafts (EHD > 3.6 mm; n = 36) to test a frequently espoused clinical guideline. Grafts with an EHD less than 3.6 mm exhibited significantly lower secondary patency compared with larger grafts (P =.0001). The positive and negative predictive values for an EHD less than 3.6 mm for secondary graft failure for grafts with at least 1 year follow-up were 86\% and 88\%, respectively. CONCLUSION: An EHD is a unique parameter that quantifies conduit size and has a significant impact on vein graft patency. An EHD less than 3.6 mm portends graft failure. This article was published in J Vasc Surg and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords