alexa Effective protein release from PEG PLA nano-particles produced by compressed gas anti-solvent precipitation techniques.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Caliceti P, Salmaso S, Elvassore N, Bertucco A

Abstract Share this page

Abstract Homogeneous PLA/insulin solutions containing different amounts of 350, 750 or 1900 Da PEG (0-75 wt.\% PEG) were processed by semi-continuous compressed CO2 anti-solvent precipitation to fabricate protein-loaded polymeric nano-particles. Proper operative conditions (temperature, pressure, CO2 flow rate and washing time) yielded more than 70\% product recovery. Scanning electron microscopy, transmission electron microscopy and light scattering demonstrated that spherical, smooth surfaced particles with size below 1 microm could be obtained. X-ray diffraction analysis showed that the gas anti-solvent process modifies the polylactide crystalline state. PEG concentration and molecular weight were found to affect both optimal operative conditions and morphological and biopharmaceutical properties of the final product. Insulin loading yield dropped from 95\% to 65\% by increasing the 1900 Da PEG content from 0 to 75 wt.\% or the PEG molecular weight from 350 to 1900 Da. The release rate increased significantly as the PEG content in the formulation increases. After 3-month incubation the drug released raised from 10\% to 100\% by increasing the 1900 Da PEG content from 23 to 7 wt.\%. Formulations containing the same 350, 750 or 1900 Da PEG amount (67 wt.\% PEG) displayed similar release profiles. Insulin release was found to take place by diffusion mechanism, despite the observation of matrix degradation.
This article was published in J Control Release and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords