alexa Effective targeting of liposomes to liver and hepatocytes in vivo by incorporation of a Plasmodium amino acid sequence.
Infectious Diseases

Infectious Diseases

Journal of Infectious Diseases & Therapy

Author(s): Longmuir KJ, Robertson RT, Haynes SM, Baratta JL, Waring AJ

Abstract Share this page

Abstract PURPOSE: Several species of the protozoan Plasmodium effectively target mammalian liver during the initial phase of host invasion. The purpose of this study was to demonstrate that a Plasmodium targeting amino acid sequence can be engineered into therapeutic nanoparticle delivery systems. METHODS: A 19-amino peptide from the circumsporozoite protein of Plasmodium berghei was prepared containing the conserved region I as well as a consensus heparan sulfate proteoglycan binding sequence. This peptide was attached to the distal end of a lipid-polyethylene glycol bioconjugate. The bioconjugate was incorporated into phosphatidylcholine liposomes containing fluorescently labeled lipids to follow blood clearance and organ distribution in vivo. RESULTS: When administered intravenously into mice, the peptide-containing liposomes were rapidly cleared from the circulation and were recovered almost entirely in the liver. Fluorescence and electron microscopy demonstrated that the liposomes were accumulated both by nonparenchymal cells and hepatocytes, with the majority of the liposomal material associated with hepatocytes. Accumulation of liposomes in the liver was several hundredfold higher compared to heart, lung, and kidney, and more than 10-fold higher compared to spleen. In liver slice experiments, liposome binding was specific to sites sensitive to heparinase. CONCLUSIONS: Incorporation of amino acid sequences that recognize glycosaminoglycans is an effective strategy for the development of targeted drug delivery systems. This article was published in Pharm Res and referenced in Journal of Infectious Diseases & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords