alexa Effectiveness of photofrin II in activation of macrophages and in vitro killing of retinoblastoma cells.
Chemical Engineering

Chemical Engineering

Journal of Analytical & Bioanalytical Techniques

Author(s): Yamamoto N, Sery TW, Hoober JK, Willett NP, Lindsay DD

Abstract Share this page

Abstract Administration of a small dose (300 ng/mouse) of photofrin II (PII) to mice, followed by 4 days of exposure to only ambient fluorescent light in animal quarters, induced Fc-receptor-mediated phagocytic and superoxide-generating capacities of peritoneal macrophages by five- and seven-fold, respectively. When these mice were kept in the dark for 4 days, no activation of macrophages was observed. These results suggest that macrophage activation is a consequence of photodynamic activation. Much higher doses (> 3000 ng/mouse) suppressed macrophage activity. However, 2 months after administration of 3000 ng PII/mouse, greatly enhanced phagocytic and superoxide-generating capacities of peritoneal macrophages were observed. In vitro photodynamic activation of macrophages was analyzed after white or red fluorescent light exposure of mouse peritoneal cells (mixture of macrophages and B and T lymphocytes) in media containing PII. A short (10 s) white fluorescent light treatment of peritoneal cells in a medium containing 0.03 ng PII/mL produced the maximal level of phagocytic activity of macrophages. Illumination with the same total fluence of red fluorescent light requires a three-fold higher concentration of PII to achieve the same extent of enhanced phagocytic activity of macrophages. Thus, photodynamic activation of macrophages with PII by white fluorescent light was more efficient than by red fluorescent light. Similarly, photodynamic killing of retinoblastoma cells was more efficient with white than red fluorescent light. The concentration of hematoporphyrin (HP) or PII required for direct photodynamic killing of retinoblastoma cells was roughly four orders of magnitude greater than that required for activation of macrophages.(ABSTRACT TRUNCATED AT 250 WORDS)
This article was published in Photochem Photobiol and referenced in Journal of Analytical & Bioanalytical Techniques

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version