alexa Effects of 17beta-estradiol on mussel digestive gland.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Canesi L, Borghi C, Fabbri R, Ciacci C, Lorusso LC,

Abstract Share this page

Abstract In bivalve molluscs the digestive gland (hepatopancreas) plays a central role in metabolism. In this work, the effects of 17beta-estradiol (E(2)) on digestive gland were evaluated in Mytilus galloprovincialis. Mussels were injected into the adductor muscle sinus with different amounts of the hormone (5, 25 and 100pmol) and tissues were sampled 24h post-injection. Functional parameters (lysosomal membrane stability-LMS, lysosomal accumulation of neutral lipids-NL and of lipofuscin-LF), as well as the activity of the key glycolytic enzymes PFK (phosphofructokinase) and PK (pyruvate kinase), and of the antioxidant enzyme catalase were evaluated. Selected genes, whose expression can be modulated by estrogens in mammalian systems and whose sequences have been identified in Mytilus, were investigated as possible targets for the action of E(2). E(2) induced a concentration-dependent decrease in LMS; such an effect was accompanied by an increase in NL accumulation, whereas the level of lipofuscin showed a slight, although not significant decrease. E(2) exposure also led to a significant increase in the activity of PFK and catalase but not of PK. Moreover, E(2) induced significant changes in the pattern of gene expression at the lower concentrations tested (5 and 25pmol) as evaluated by quantitative RT-PCR. In particular, increased transcription of catalase, as well as of the metallothionein 20 (MT20) isoform were observed; on the other hand, a decreased transcription of the p53 gene was detected. The results demonstrate that in Mytilus the digestive gland represents a target for the action of E(2), and that the hormone can modulate the lysosomal function, as well as lipid and glucose metabolism. Moreover, these data suggest that E(2) may also alter oxidative stress conditions in this tissue, as indicated by the increased transcription of genes (metallothionein and catalase) that play a role in antioxidant defences. Overall, the results indicate that E(2) can modulate both functional parameters and gene expression in mussel hepatopancreas and underline the importance of investigating also non-reproductive effects of estrogenic compounds in bivalve molluscs. This article was published in Gen Comp Endocrinol and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version