alexa Effects of a fast cable car ascent to an altitude of 2700 meters on EEG and ECG


Journal of Clinical & Experimental Cardiology

Author(s): Christoph Guger

Abstract Share this page

In the Eastern Alps, the Dachstein massif with a height of almost 3000 m is an ideal location for investigating the effects of changes in altitude on the human body. Within a few minutes, a cable car facilitates an ascent from 1702 to 2700 m above sea level, where the partial pressure of oxygen is about 550 mmHg (as compared to 760 mmHg at sea level). In this study, 10 healthy subjects performed a reaction time task at 990 m and 2700 m in altitude. The subjects were instructed to perform a right hand index finger movement as fast as possible after a green light flashed (repeated 50 times). The corresponding electrocardiogram (ECG) and the electroencephalogram (EEG) were recorded. From the ECG heart rate and heart rate variability measures in the time and frequency domain were calculated. An event-related desynchronization/synchronization (ERD/ERS) analysis was performed with the EEG data. Finally, the EEG activity and the ECG parameters were correlated. The study showed that with the fast ascent to 2700 m the heart rate increased and the heart rate variability measures decreased. The correlation analysis indicated a close relationship between the EEG activity and the heart rate and heart rate variability. Furthermore it was shown for the first time that the beta ERS in the 14-18 Hz frequency range (post-movement beta ERS) was significantly reduced at high altitude. Very interesting also is the loss of correlation between EEG activity and cardiovascular measures during finger movement at high altitude. The suppressed post-movement beta ERS at the altitude of 2700 m may be interpreted as results of an increased cortical excitability level when compared with the reference altitude at 990 m above sea level.

This article was published in Neurosci Lett and referenced in Journal of Clinical & Experimental Cardiology

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version