alexa Effects of cod liver oil on tissue antioxidant pathways in normal and streptozotocin-diabetic rats.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Hnkar T, Aktan F, Ceylan A, Karasu C Antioxidants i

Abstract Share this page

Abstract Lipid disorders and increased oxidative stress may exacerbate some complications of diabetes mellitus. Previous studies have implicated the beneficial effects of some antioxidants, omega-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the protection of cells from the destructive effect of increased lipids and lipid peroxidation products. This study, therefore, was designed to investigate the effects of cod liver oil (CLO, Lysi Ltd. Island), which comprises mainly vitamin A, PUFAs, EPA and DHA. Effects were monitored on plasma lipids, lipid peroxidation products (MDA) and the activities of antioxidant enzymes, glutathione peroxidase (GSHPx) and catalase in heart, liver, kidney and lung of non-diabetic control and streptozotocin (STZ)-induced-diabetic rats. Two days after STZ-injection (55 mg kg(-1) i.p.), non-diabetic control and diabetic rats were divided randomly into two groups as untreated or treated with CLO (0.5 ml kg(-1) rat per day) for 12 weeks. Plasma glucose, triacylglycerol and cholesterol concentrations were significantly elevated in 12-week untreated-diabetic animals; CLO treatment almost completely prevented these abnormalities in triacylglycerol and cholesterol, but hyperglycaemia was partially controlled. CLO also provided better weight gain in diabetic animals. In untreated diabetic rats, MDA markedly increased in aorta, heart and liver but was not significantly changed in kidney and lung. This was accompanied by a significant increase in both GSHPx and catalase enzyme activities in aorta, heart, and liver of diabetic rats. In kidney and lung, diabetes resulted in reduced catalase while GSHPx was significantly activated. In aorta, heart, and liver, diabetes-induced changes in MDA were entirely prevented by CLO treatment. In the tissues of CLO-treated diabetic animals, GSHPx activity paralleled those of control animals. CLO treatment also caused significant improvements in catalase activities in every tissue of diabetic rats, but failed to affect MDA and antioxidant activity in control animals. The current study suggests that the treatment of diabetic rats with CLO provides better control of glucose and lipid metabolism, allows recovery of normal growth rate, prevents oxidative/peroxidative stress and ameliorates endogenous antioxidant enzyme activities in various tissues. Because CLO contains a plethora of beneficial compounds together, its use for the management of diabetes-induced complications may provide important advantages. Copyright 2002 John Wiley & Sons, Ltd. This article was published in Cell Biochem Funct and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version