alexa Effects of dietary nitrate on oxygen cost during exercise.
Chemical Engineering

Chemical Engineering

Journal of Analytical & Bioanalytical Techniques

Author(s): Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B

Abstract Share this page

Abstract AIM: Nitric oxide (NO), synthesized from l-arginine by NO synthases, plays a role in adaptation to physical exercise by modulating blood flow, muscular contraction and glucose uptake and in the control of cellular respiration. Recent studies show that NO can be formed in vivo also from the reduction of inorganic nitrate (NO(3) (-)) and nitrite (NO(2) (-)). The diet constitutes a major source of nitrate, and vegetables are particularly rich in this anion. The aim of this study was to investigate if dietary nitrate had any effect on metabolic and circulatory parameters during exercise. METHOD: In a randomized double-blind placebo-controlled crossover study, we tested the effect of dietary nitrate on physiological and metabolic parameters during exercise. Nine healthy young well-trained men performed submaximal and maximal work tests on a cycle ergometer after two separate 3-day periods of dietary supplementation with sodium nitrate (0.1 mmol kg(-1) day-1) or an equal amount of sodium chloride (placebo). RESULTS: The oxygen cost at submaximal exercise was reduced after nitrate supplementation compared with placebo. On an average Vo(2) decreased from 2.98 +/- 0.57 during CON to 2.82 +/- 0.58 L min(-1) during NIT (P < 0.02) over the four lowest submaximal work rates. Gross efficiency increased from 19.7 +/- 1.6 during CON to 21.1 +/- 1.3\% during NIT (P < 0.01) over the four lowest work rates. There was no difference in heart rate, lactate [Hla], ventilation (VE), VE/Vo(2) or respiratory exchange ratio between nitrate and placebo during any of the submaximal work rates. CONCLUSION: We conclude that dietary nitrate supplementation, in an amount achievable through a diet rich in vegetables, results in a lower oxygen demand during submaximal work. This highly surprising effect occurred without an accompanying increase in lactate concentration, indicating that the energy production had become more efficient. The mechanism of action needs to be clarified but a likely first step is the in vivo reduction of dietary nitrate into bioactive nitrogen oxides including nitrite and NO. This article was published in Acta Physiol (Oxf) and referenced in Journal of Analytical & Bioanalytical Techniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version