alexa Effects of differences in mineralization on the mechanical properties of bone.
Clinical Research

Clinical Research

Journal of Clinical Case Reports

Author(s): Currey JD

Abstract Share this page

Abstract There is a considerable variation in the mineralization of bone; normal, non-pathological compact bone has ash masses ranging from 45 to 85\% by mass. This range of mineralization results in an even greater range of mechanical properties. The Young modulus of elasticity can range from 4 to 32 GPa, bending strength from 50 to 300 MPa, and the work of fracture from 200 to 7000 Jm-2. It is not possible for any one type of bone to have high values for all three properties. Very high values of mineralization produce high values of Young modulus but low values of work of fracture (which is a measure of fracture toughness). Rather low values of mineralization are associated with high values of work of fracture but low values of Young modulus and intermediate values of bending strength. The reason for the high value for the Young modulus associated with high mineralization is intuitively obvious, but has not yet been rigorously modelled. The low fracture toughness associated with high mineralization may be caused by the failure of various crack-stopping mechanisms that can act when the mineral crystals in bone have not coalesced, but which become ineffective when the volume fraction of mineral becomes too high. The adoption of different degrees of mineralization by different bones, leading to different sets of mechanical properties, is shown to be adaptive in most cases studied, but some puzzles still remain.
This article was published in Philos Trans R Soc Lond B Biol Sci and referenced in Journal of Clinical Case Reports

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • Global Experts meeting on Oncology Case Reports
    Aug 29-31, 2017 London, UK
  • Global Experts Meeting on Case Reports
    Osaka, Japan October 09-11, 2017
  • 6th Global Experts Meeting on Medical Case Reports
    October 16-18, 2017 San Francisco, California, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords