alexa Effects of erythrocyte flexibility on microvascular perfusion and oxygenation during acute anemia.
Haematology

Haematology

Journal of Blood Disorders & Transfusion

Author(s): Cabrales P

Abstract Share this page

Abstract Responses to exchange transfusion using red blood cells (RBCs) with normal and reduced flexibility were studied in the hamster window chamber model during acute moderate isovolemic hemodilution to determine the role of RBC membrane stiffness in microvascular perfusion and tissue oxygenation. Erythrocyte stiffness was increased by 30-min incubation in 0.02\% glutaraldehyde solution, and unreacted glutaraldehyde was completely removed. Filtration pressure through 5-microm pore size filters was used to quantify stiffness of the RBCs. Anemic conditions were induced by two isovolemic hemodilution steps using 6\% 70-kDa dextran to a hematocrit (Hct) of 18\% (moderate hemodilution). The protocol continued with an exchange transfusion to reduce native RBCs to 75\% of baseline (11\% Hct) with either fresh RBCs (RBC group) or reduced-flexibility RBCs (GRBC group) suspended in 5\% albumin at 18\% Hct; a plasma expander (6\% 70-kDa dextran; Dex70 group) was used as control. Systemic parameters, microvascular perfusion, capillary perfusion [functional capillary density (FCD)], and oxygen levels across the microvascular network were measured by noninvasive methods. RBC deformability for GRBCs was significantly decreased compared with RBCs and moderate hemodilution conditions. The GRBC group had a greater mean arterial blood pressure (MAP) than the RBC and Dex70 groups. FCD was substantially higher for RBC (0.81 +/- 0.07 of baseline) vs. GRBC (0.32 +/- 0.10 of baseline) and Dex70 (0.38 +/- 0.10 of baseline) groups. Microvascular tissue Po(2) was significantly lower for Dex70 and GRBC vs. RBC groups and the moderate hemodilution condition. Results were attributed to decreased oxygen uploading in the lungs and obstruction of tissue capillaries by rigidified RBCs, indicating that the effects impairing RBC flexibility are magnified at the microvascular level, where perfusion and oxygenation may define transfusion outcome. This article was published in Am J Physiol Heart Circ Physiol and referenced in Journal of Blood Disorders & Transfusion

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords