alexa Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Valerio P, Pereira MM, Goes AM, Leite MF

Abstract Share this page

Abstract Glutamate released by osteoblasts sharing similarities with its role in neuronal transmission is a very new scientific concept which actually changed the understanding of bone physiology. Since glutamate release is a calcium (Ca(2+))-dependent process and considering that we have previously demonstrated that the dissolution of bioactive glass with 60\% of silicon (BG60S) can alter osteoblast Ca(2+)-signaling machinery, we investigated whether BG60S induces glutamate secretion in osteoblasts and whether it requires an increase in intracellular Ca(2+). Here we showed that the extracellular Ca(2+) increase due to BG60S dissolution leads to an intracellular Ca(2+) increase in the osteoblast, through the activation of an inositol 1,4,5-triphosphate receptor (InsP(3)R) and a ryanodine receptor (RyR). Additionally, we also demonstrated that glutamate released by osteoblasts can be profoundly altered by BG60S. The modulation of osteoblast glutamate released by the extracellular Ca(2+) concentration opens a new window in the field of tissue engineering, since many biomaterials used for bone repair are able to increase the extracellular Ca(2+) concentration due to their dissolution products. This article was published in Biomed Mater and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords