alexa Effects of luteolin on spatial memory, cell proliferation, and neuroblast differentiation in the hippocampal dentate gyrus in a scopolamine-induced amnesia model.
Reproductive Medicine

Reproductive Medicine

Clinics in Mother and Child Health

Author(s): Yoo DY, Choi JH, Kim W, Nam SM, Jung HY,

Abstract Share this page

Abstract OBJECTIVES: Luteolin, a common flavonoid from many plants, has various pharmacological activities, including a memory-improving effect. In this study, we investigated the effects of luteolin on spatial memory, cell proliferation, and neuroblast differentiation in the hippocampal dentate gyrus in a rat model of scopolamine (SCO)-induced amnesia. METHODS: Scopolamine was subcutaneously administered for 28 days via an Alzet minipump (44 mg/ml delivered at 2·5 μl/h) along with a daily intraperitoneal administration of vehicle (saline) 10 mg/kg luteolin or 5 mg/kg galantamine (GAL) (a control drug for acetylcholinesterase (AChE) inhibitor) for 28 days. RESULTS: The administration of SCO significantly decreased the spatial alteration percentage in the Y-maze test compared to that in the vehicle (saline)-treated group. The administration of luteolin or GAL significantly improved the spatial alteration percentage compared to that in the SCO-treated group. Similarly, the administration of SCO significantly decreased the cell proliferation (Ki67-positive cells) and neuroblast differentiation (doubleocortin-positive cells) in the dentate gyrus. The administration of luteolin or GAL significantly mitigated the SCO-induced reduction of Ki67- and doublecortin-immunoreactive cells in the dentate gyrus. In addition, the administration of luteolin significantly decreased the lipid peroxidation (malondialdehyde (MDA) levels) and increased the brain-derived neurotrophic factor (BDNF) and AChE levels in the hippocampal homogenates compared to the SCO-treated group. CONCLUSION: These results suggest that the luteolin treatment improves the SCO-induced reduction of cell proliferation and neuroblast differentiation in the dentate gyrus. The mechanism underlying the amelioration of SCO-induced amnesia by luteolin may be associated with the increase in BDNF, acetylcholine, and the decrease in lipid peroxidation. This article was published in Neurol Res and referenced in Clinics in Mother and Child Health

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords