alexa Effects of millimeter waves on ionic currents of Lymnaea neurons.
Molecular Biology

Molecular Biology

Journal of Cell Science & Therapy

Author(s): Alekseev SI, Ziskin MC

Abstract Share this page

Abstract The effects of mm-waves 60.22-62.22 GHz and 75 GHz on A-type K+ currents and the effects of 61.22 GHz on Ca2+ currents of Lymnaea neurons were investigated using a whole-cell voltage-clamp technique. The open end of a rectangular waveguide covered with a thin Teflon film served as a radiator. Specific absorption rates at the waveguide outlet, inserted into physiological solution, were in the range of 0-2400 W/kg. Millimeter wave irradiation increased the peak amplitudes, activation rates, and inactivation rates of both ion currents. The changes in A-type K+ current were not dependent on the irradiation frequency. It was shown that the changes in the amplitudes and kinetics of both currents resulted from the temperature rise produced by irradiation. No additional effects of irradiation on A-type K+ current other than thermal were found when tested at the phase transition temperature or in the presence of ethanol. Ethanol reduced the thermal effect of irradiation. Millimeter waves had no effect on the steady-state activation and inactivation curves, suggesting that the membrane surface charge and binding of calcium ions to the membrane in the area of channel locations did not change.
This article was published in Bioelectromagnetics and referenced in Journal of Cell Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version